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WHY QUAD MESHES?

• alignment to principal curvature directions 

• tensor-product structure (for NURBS, etc.) 

• anisotropy without bad angles 

• bilinear interpolation 

• higher efficiency in numerical simulations 

• aesthetics 

• legacy reasons
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ENGINEERING APPROACHES

• Paving

Choi and Kim 2011
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MORSE-SMALE

Spectral Mesh Processing

SIGGRAPH Asia 2009 Course 32

Bruno Lévy (INRIA, France)
Hao (Richard) Zhang (Simon Fraser University, Canada)

Levy and Zhang 2009

• Eigenfunctions of the Laplace-Beltrami operator
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MORSE-SMALE

Ling et al. 2014        improved alignment, sizing

Spectral Quadrangulation with Feature Curve Alignment and Element Size Control • 11:7

Fig. 9. SQUARE. Left: QE (λ = −1050, no vibration enhancement) and
its MSC. Middle: The density function. Right: The output quad mesh.

Fig. 10. BEETLE. Left: QE (λ = −8600) and its MSC. Right: The output
quad mesh. (Model with permission of David Bommes)

Fig. 11. SPIRAL: (a) QE (λ = −3600) and its MSC with feature lines
colored in red; (b) the output quad mesh; (c) the top view of (b).

5. RESULTS

We shall discuss experimental results in this section. To better
appreciate the effect of the parameter λ on computing a quasi-
eigenfunction, we scale all 2D (respectively, 3D) shapes to fit them
in the box [−1, 1]2 (respectively, [−1, 1]3). We also scale the den-
sity r so that its minimal value is 1. Note that our method does not
restrict the λ to be an eigenvalue, thus λ can be adjusted to cater for
desired overall density.

5.1 Quadrangular Results

As the first example, we apply our method to computing a quad
mesh of a square with the quad element size following the same
density function as shown in Figure 1. The quad mesh computed
by our method (shown in Figure 9) has a much better singularity
distribution than that produced by the method of Zhang et al. [2010]
(Figure 1). Note that the direction field implied by our quad mesh
in Figure 9 is compatible with the given density field, and it would
be difficult to compute such a direction field beforehand if it were
needed for guiding the computation of the quad mesh as in the
previous method [Zhang et al. 2010].

These figures shows a quasi-eigenfunction (λ = −1200, no vi-
bration enhancement) and the resulting quad mesh computed by our
method on the same star-shaped domain as Figure 2.

Fig. 12. FANDISK (top, λ = −2000), JOINT (middle, λ = −2400) and
David (bottom, λ = −4600) with feature lines colored in red: (a) QE and its
MSC; (b) the output quad mesh and the density function; (c) the output quad
mesh and the density function. The color coding of the density function
is shown on the right. (Fandisk model: AIM. SHADE; Joint model with
Permission of Dongming Yan; David model: Stanford Scanning Repository)

Fig. 13. All sharp edges of the Fandisk are marked as feature curves. On the
left is the quasi-eigenfunction and its MSC (λ = −1900) that we computed.
On the right is the resulting quad mesh and the density field that is defined
by the closed minimal distance of a point to the feature curves.

In comparison with the eigenfunctions shown Figure 2, the Morse-
Smale complex of this quasi-eigenfunction aligns well with the
domain boundary.

Figure 10 shows the QE and its MSC computed by our method on
an open surface with boundary curves. Figure 11 shows the QE and
its MSC computed by our method on the Spiral model with sharp

ACM Transactions on Graphics, Vol. 34, No. 1, Article 11, Publication date: November 2014.
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MORSE-SMALE
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Fig. 6. BUTTERFLY (λ = −1700): (a) QE without vibration enhance-
ment; (b) QE with vibration enhancement; (c) quad mesh from (b).

The penalty terms are applied to all the vertices V to make local
vibration amplitudes in the two orthogonal directions as similar as
possible.

Using the solution of Eq. (13) as the initial value, we optimize
the following energy

E(f) = ELr (f) + ω

(
∑

i∈V

Ea,i(f)

)

+ ξ∥Bf − C∥2
2, (19)

where the weights ω = 0.1, ξ = 100 are used in all our experiments.
In the phase of vibration enhancement, Eq. (19) is optimized by the
Gauss-Newton method, and CHOLMOD [Chen et al. 2008] is used
in each iteration. The cost of each iteration is less than solving the
KKT system in Eq. (13), and ten iterations are performed in our
experiments unless otherwise stated.

We use the penalty function with the boundary condition
Bf = C, because using the Lagrange multipliers would intro-
duce a large number of hard constraints, which prevents the
scalar field near the boundary from adjusting for desired vibration.
As shown in the inset, the
critical points on the bound-
ary are more prominent with
the penalty scheme (left) than
using the Lagrange multipliers
scheme (right).

Vibration enhancement also improves the robustness of our
method when the value of λ is away from an eigenvalue. For exam-
ple, for the quadrangulation of the domain [−1, 1]2 in Figure 7, to
generate quad meshes from the QEs with n = 4 and n = 5 periods
along each side, the ideal values of λ should be λ ≈ −158 and
λ ≈ −247, respectively (ideally, λ should be −(nπ )2). If we set
λ = −200, which lies between the two ideal values, the QE solved
from Eq. (13) does not possess prominent critical points (see the
region surrounded by the black rectangle in Figure 7). However,
the result improves significantly after applying a few iterations of
vibration enhancement.

4. EXTENSION TO HEX-DOMINANT REMESHING

Hexahedral meshing of a 3D domain is another important and chal-
lenging problem in mesh generation. Unlike a 2D manifold, that
can be closed without no boundary, a compact 3D volume always
has a boundary surface. That is, the boundary alignment issue is
inevitable in hex meshing of any 3D volume. Hence, due to their
lack of proper boundary treatment, the previous spectral remeshing
methods [Dong et al. 2006; Huang et al. 2008] for surface quad-
rangulation cannot be extended to hex meshing of 3D volumes. In
this section, we will briefly discuss how our spectral method with

Fig. 7. A fewer number of vibration enhancement iterations improves the
distribution of the critical points when λ is not an eigenvalue. The numbers in
parentheses indicate the value of λ and the number of iterations, respectively.

Fig. 8. 3D Morse-Smale complex: (a) A regular 3D Morse-Smale
cell (3 pairs of saddles); (b) a general 3D Morse-Smale cell; (c) eight
neighboring Morse-Smale cells in a 3D Morse-Smale complex.

new boundary conditions can extend Eq. (6) to hexahedral mesh
generation, and we present some preliminary results.

One major consideration in this extension is how to discrete a
3D domain and represent the Laplacian operator on it. We assume
the domain is represented by a sufficiently fine tetrahedral mesh.
If we use the 3D counterpart of the cotangent formula in Eq. (8)
for tetrahedral meshes [Wang et al. 2003], the obtuse angles in the
tetrahedral mesh will result in the negative values of the cotangent
formula, which in turn will cause numerical instability [Wardetzky
et al. 2007]. Because completely eliminating obtuse angles in a tet
mesh is still an open problem [Tournois et al. 2009], we compute
quasi-eigenfunctions on a tetrahedral mesh using a quadratic finite
element formulation that is an extension of the linear finite element
analysis on a triangular mesh [Vallet and Lévy 2008; Reuter et al.
2009].

We use the method in Gyulassy et al. [2007] to extract the 3D
Morse-Smale complex of a quasi-eigenfunction, and construct a
hex mesh topologically by subdividing the Morse-Smale complex
and geometrically smoothing it by iteratively updating its vertex
positions to the centroid of neighboring hex elements. Unlike a
2D Morse-Smale complex, a 3D Morse-Smale complex contains
two types of saddles, called 1-saddle and 2-saddle, respectively
[Gyulassy et al. 2007] (see Figure 8). An important point to note is
that 3D Morse-Smale complex cells are not necessarily hexahedra
(see Figure 8(b)). Therefore, a small portion of non-hex elements
will remain in each non-hex MSC cell after subdivision. Hence, in
general, our method generates a hex-dominant mesh instead of a
pure hex mesh.

ACM Transactions on Graphics, Vol. 34, No. 1, Article 11, Publication date: November 2014.
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new boundary conditions can extend Eq. (6) to hexahedral mesh
generation, and we present some preliminary results.

One major consideration in this extension is how to discrete a
3D domain and represent the Laplacian operator on it. We assume
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If we use the 3D counterpart of the cotangent formula in Eq. (8)
for tetrahedral meshes [Wang et al. 2003], the obtuse angles in the
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element formulation that is an extension of the linear finite element
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We use the method in Gyulassy et al. [2007] to extract the 3D
Morse-Smale complex of a quasi-eigenfunction, and construct a
hex mesh topologically by subdividing the Morse-Smale complex
and geometrically smoothing it by iteratively updating its vertex
positions to the centroid of neighboring hex elements. Unlike a
2D Morse-Smale complex, a 3D Morse-Smale complex contains
two types of saddles, called 1-saddle and 2-saddle, respectively
[Gyulassy et al. 2007] (see Figure 8). An important point to note is
that 3D Morse-Smale complex cells are not necessarily hexahedra
(see Figure 8(b)). Therefore, a small portion of non-hex elements
will remain in each non-hex MSC cell after subdivision. Hence, in
general, our method generates a hex-dominant mesh instead of a
pure hex mesh.
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• Problems: 

• supports only topological disks (and punctured disks) 

• more complex surfaces: cut open, constrained transitions 

• the grid in parameter space is completely regular

Kälberer et al. 2007
Bommes et al. 2009
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INTEGER GRID MAPS

• Problems: 

• supports only topological disks (and punctured disks) 

• more complex surfaces: cut open, constrained transitions 

• the grid in parameter space is completely regular 

• irregular vertices: cut, constrained transitions (           ) 

• where to put irregular vertex with which valence?

k · 90�
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IRREGULAR VERTICES

• construct alternative Gaussian curvature, 
(close to original) 

• by constructing alternative 
parallel transport 

• As-Levi-Civita-as-possible 

�
2

-�
2

X

ij

�2ij ! min

Vaxman et al. 2016: Directional Field Synthesis
Li et al. 2006
Ray et al. 2008

Bommes et al. 2009
Crane et al. 2010
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FIELD GUIDED PARAMETRIZATION

kJF � Ik2 ! min

f

J = rf
F = [~u ~v ]

Bommes et al. 2013
Ebke et al. 2014
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INTEGER CONSTRAINTS

• Some values need to be integer 

• But which integers? 

• Solve real-valued 

• Round 

• Solve with constraints 

• all at once 
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INTEGER CONSTRAINTS

• Some values need to be integer 

• But which integers? 

• Solve real-valued 

• Round 

• Solve with constraints 

• all at once 

• one by one, greedy 

• “try all, take best” 

• “differential” approach

Bommes et al. 2009

Kälberer et al. 2007

Bommes et al. 2013

Campen et al. 2015
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ROBUSTNESS

• injectivity Bommes et al. 2013
Lipman 2012

Myles et al. 2014
Liu et al. 2016

det J > 0

J = rf

Ebke et al. 2013



ANISOTROPY & SIZING

• Use non-orthonormal “cross”-field
kJF � Ik2 ! min

F = [~u ~v ]

Kovacs et al. 2010



ANISOTROPY & SIZING

• Use non-orthonormal “cross”-field
kJF � Ik2 ! min

F = [~u ~v ]

Panozzo et al. 2014



LOCAL PARAMETRIZATION

Ray et al. 2006
Knöppel et al. 2015
Jakob et al. 2015
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• “Extremal” Integer Grid Maps Bommes et al. 2013
Campen et al. 2015
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QUAD LAYOUTS

• Base-complex 
• simplify by modifications to quad mesh 
• construct from scratch

Tarini et al. 2011
Bommes et al. 2011

Campen et al. 2012
Campen & Kobbelt 2014

Razafindrazaka et al. 2015
Usai et al. 2015



QUAD LAYOUTS: DUAL LOOPS

• Base-complex 
• simplify by modifications to quad mesh 
• construct from scratch Campen et al. 2012

Campen & Kobbelt 2014
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• Param. generalizes kJF � Ik2 ! min F = [~u ~v ~w ]



3D?

• Param. generalizes 

• Cross fields don’t! 

• harder to get efficient formulation 

• most frame fields are not “legal” 

• legality conditions global and complex 

• even for the local conditions: no simple way to take 
them into account (other than by post-processing)

kJF � Ik2 ! min

X

ij

�2ij ! min

F = [~u ~v ~w ]



SUMMARY

• Early Approaches 
• Pairing, Subdivision, Paving, Tracing 

• Morse-Smale 
• Eigenfunctions, wave functions 

• Integer Grid Maps 
• flexible, selective level of control, guiding field 

• Global Structure 
• Post-processing, Dual Loops, Extremal Integer Grid Maps 

• 3D 
• Main problem: singularity/irregularity structure



RESOURCES

• libigl  
basic implementation of integer grid maps 

• instant-meshes 
local param. based quad-(dominant) meshing 

• CoMISo 
mixed integer solver for cross fields, param. 

• QEx, HexEx  
robust extraction of meshes from parametrizations

Jacobson, Panozzo et al.

Jakob et al.

Bommes, Zimmer et al.

Ebke et al., Lyon et al.



REFERENCES
• Alliez et al. 2003: Anisotropic polygonal remeshing 
• Bommes et al. 2009: Mixed Integer Quadrangulation 
• Bommes et al. 2011: Global Structure Optimization of Quadrilateral Meshes 
• Bommes et al. 2013: Integer-Grid Maps for Reliable Quad Meshing  
• Campen et al. 2012: Dual Loops Meshing: Quality Quad Layouts on Manifolds 
• Campen & Kobbelt 2014: Dual Strip Weaving: Interactive Design of Quad Layouts using Elastica Strips 
• Campen et al. 2015: Quantized Global Parametrization 
• Choi and Kim 2011: Development of a New Algorithm for Automatic Generation of a Quadrilateral Mesh 
• Crane et al. 2010: Trivial Connections on Discrete Surfaces 
• Dong et al. 2006: Spectral Surface Quadrangulation 
• Ebke et al. 2013: QEx: Robust Quad Mesh Extraction 
• Ebke et al. 2014: Level-of-Detail Quad Meshing 
• Huang et al. 2008: Spectral Quadrangulation with Orientation and Alignment Control 
• Jakob et al. 2015: Instant Field Aligned Meshes 
• Kälberer et al. 2007: QuadCover–Surface Parameterization using Branched Coverings 
• Knöppel et al. 2015: Stripe Patterns on Surfaces 
• Kovacs et al. 2010: Anisotropic Quadrangulation 
• Levy and Zhang 2009: Spectral Mesh Processing 
• Li et al. 2006: Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces. 
• Li et al. 2012: All-Hex Meshing using Singularity-Restricted Field 
• Ling et al. 2014: Spectral Quadrangulation with Feature Curve Alignment and Element Size Control. 
• Lipman 2012: Bounded Distortion Mapping Spaces 
• Liu et al. 2016: Fast and Robust Inversion-Free Shape Manipulation 
• Marinov & Kobbelt 2004: Direct Anisotropic Quad-Dominant Remeshing 
• Myles et al. 2014: Robust field-aligned global parametrization 
• Panozzo et al. 2014: Frame Fields: Anisotropic and Non-Orthogonal Cross Fields 
• Ray et al. 2006: Periodic Global Parametrization 
• Ray et al. 2008: N-Symmetry Direction Field Design 
• Razafindrazaka et al. 2015: Perfect Matching Quad Layouts for Manifold Meshes 
• Tarini et al. 2011: Simple Quad Domains for Field Aligned Mesh Parametrization 
• Usai et al. 2015: Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton 
• Vaxman et al. 2016: Directional Field Synthesis, Design, and Processing 
• Weinkauf et al. 2010: Topology-based Smoothing of 2D Scalar Fields with C1-Continuity 
• Zhang et al. 2010: A Wave-based Anisotropic Quadrangulation Method


