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“Old Timer”



1979: Sudanese Möbius Band, UNC-CH Graphics Lab



1987: “Red’s Dream”, Pixar



1993: “Not Knot”, Geometry Center



2004-2016, jReality developer, TU-Berlin



2006: “The Borromean Rings”, TU-Berlin



2015: “conform!”, TU-Berlin



Standard toolkit for
euclidean geometry



By euclidean geometry we mean
the geometry of euclidean space En.

not euclidean vector space Rn.
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Main Idea

The main idea is to represent geometric primitives (points,
lines, planes) as numbers which can be multiplied with each
other using a geometric product.



Example 1: A geometric construction

P

Π

Task: Given a point P and a line Π in E3, find the unique line
through P perpendicular to Π.



Example 1: A geometric construction

P

Π

Π.P

Step 1: Π · P is the plane through P perpendicular to Π.



Example 1: A geometric construction

P

Π

Π.P

(Π.P)ΛΠ

Step 2: (Π · P) ∧ Π is the intersection of this plane with Π.



Example 1: A geometric construction

P

Π

Π.P ((Π.P)ΛΠ)VP

(Π.P)ΛΠ

Step 3: ((Π · P) ∧ Π) ∨ P is the joining line of this point with P.



Example 2: A kaleidoscope

Task: Given mirror planes a and b and some geometry G,
represent the kaleidoscope generated by the mirrors and G.



Example 2: A kaleidoscope

Step 1: bGb is the reflection of G in b, aGa the reflection in a.



Example 2: A kaleidoscope

Solution: Form “sandwiches” aGa, bGb, abGba, abaGaba etc.,
subject to the relation (ab)6 = 1.



Antecedents ...

QUATERNIONS: An algebra for R3
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Quaternions (1843)

I Imaginary quaternions. IH : (x , y , z) ∈ R3 ↔ x i + y j + zk.
I Unit quaternions. U := {g ∈ H | gg = 1}.
I “Geometric” product. For g,h ∈ IH,

gh = −g · h + g× h

I Exponential map IH→ U. g ∈ U can be written as
g = etv(= cos t + sin tv) with v ∈ IH and v2 = −1.

I Rotations as sandwiches. For x ∈ R3 and g ∈ U, gxg is
a rotation of x around the axis v through an angle 2t .

I ODE’s for Euler top.

ġ = gVc

Ṁc =
1
2

(VcMc −McVc)
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Quaternions (1843)

BUT:
Quaternions don’t allow for representing

lines or planes, only points.



Quaternions (1843)

AND:
Quaternions don’t allow for representing

translations,
only rotations around the origin.



Grassmann algebra

Hermann Grassmann (1807-1877)

Ausdehnungslehre (1844).











Grassmann algebra

BUT:
Grassmann algebra doesn’t include

inner or cross products,
only outer product

(no metric).



William Clifford

William Clifford (1845-1879)

Inventor of biquaternions and of geometric algebra



Biquaternions (1873)

Clifford’s first great discovery, biquaternions, does for E3 what
H does for R3.

I Biquaternions: g + εh where ε2 ∈ {1,−1,0}.
I When ε2 = 0, called dual quaternions DH.
I All the listed features of H generalize to DH.

I “Geometric” product.
I Exponential map from imaginary DH to unit DH.
I Unit DH: rotations and translations as sandwiches.
I ODE’s for free top.

I But, like the quaternions, it does not include meet and join
operators.



Geometric algebra (1878)

The main idea: add an inner product to a Grassmann algebra.

I An inner product a · b is a symmetric bilinear form defined
on 1-vectors.

I It is characterized by its signature, a triple (p,n, z), telling
how many basis vectors square to 1, -1, and 0 (resp.).

I Define a geometric product on 1-vectors by:

ab := a · b + a ∧ b

I It can be extended to an associative product on the whole
Grassmann algebra to produce a geometric algebra.

I It is written Rp,n,z or R∗p,n,z or P(Rp,n,z) or P(R∗p,n,z),
depending on the base Grassmann algebra.
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Geometric algebra for euclidean geometry

I Exercise: R3,0,0 (or R∗3,0,0) is the desired geometric algebra
for euclidean vector space R3.

I Exercise: R+
3,0,0 ' H.

I Non-euclidean geometies. P(R3,0,0) is a geometric algebra
for the 2-sphere, and P(R2,1,0) for the hyperbolic plane.

I But a GA for En remained elusive 100 years after Clifford’s
early death (1879).
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Example: n = 2, the euclidean plane

〈[a1,b1, c1], [a2,b2, c2]〉 = a1a2 + b1b2 = cosα

The correct GA is thus P(R∗2,0,1).
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Example: n = 2, the euclidean plane

〈[a1,b1, c1], [a2,b2, c2]〉 = a1a2 + b1b2 = cosα

The correct GA is thus P(R∗2,0,1).



Basis vectors for P(R∗2,0,1)

e0

e2e
1

••

•• ••E1E2

E0

Note: We have renamed e3 as e0 and E3 as E0.



Multiplication table for P(R∗2,0,1)

E0 := e1e2, E1 := e2e0, E2 := e0e1, I := e0e1e2

1 e0 e1 e2 E0 E1 E2 I

1 1 e0 e1 e2 E0 E1 E2 I
e0 e0 0 E2 −E1 I 0 0 0
e1 e1 −E2 1 E0 e2 I −e0 E1

e2 e2 E1 −E0 1 −e1 e0 I E2

E0 E0 I −e2 e1 −1 −E2 E1 −e0

E1 E1 0 I −e0 E2 0 0 0
E2 E2 0 e0 I −E1 0 0 0
I I 0 E1 E2 −e0 0 0 0



Geometric algebra notation

I 〈X〉k is grade-projection operator: the grade-k part of X.
I A k -vector satisfies X = 〈X〉k .
I Write 1-vectors (lines) using small Roman letters a,b, etc.
I Write 2-vectors (points) using large Roman letters A,B,

etc..



Euclidean and ideal elements

I For a k -vector X ∈ P(R∗2,0,1), X2 is a scalar.
I A point or line satisfying X2 6= 0 is euclidean.
I A point or line satisfying X2 = 0 is ideal.
I e0 is the ideal line, E1 and E2 are the ideal points in the x-

and y -directions.
I Ideal points can be identified with free vectors.
I A euclidean line a can be normalized so ‖a‖ = 1.
I A euclidean point P can be normalized so ‖P‖ = 1.
I An ideal point V can be normalized so ‖V‖∞ = 1.

I Ideal norm ‖ ‖∞ based on signature (2,0,0) on e0.
I ⇒ ‖(x , y ,0)‖∞ =

√
x2 + y2.

I We normalize everywhere we can!



Basis vectors for P(R∗2,0,1)

e0

e2e
1

••

•• ••E1E2

E0

y-direction x-direction

origin

ideal line



ab
Assume a and b are two normalized euclidean lines (1-vectors).

a

b

acos(a • b)•P

If a and b intersect in a normalized euclidean point P:

ab = a · b + a ∧ b = cosα + (sinα)P

where α is the oriented angle between the lines.



ab
Assume a and b are two normalized euclidean lines (1-vectors).

b

d
Va ab

If a and b intersect in a normalized ideal point V:

ab = 1 + dabV

where dab is the oriented distance between the lines.



ab

The formula correctly differentiates between the two cases and
provides the appropriate weighting factor:

I an angle when the lines intersect, and
I a distance when they are parallel.

This interweaving of the euclidean and the ideal
is a recurring theme in P(R∗n,0,1).



ab

The formula correctly differentiates between the two cases and
provides the appropriate weighting factor:

I an angle when the lines intersect, and
I a distance when they are parallel.

This interweaving of the euclidean and the ideal
is a recurring theme in P(R∗n,0,1).



aP

a
•P

a P•

•a Pv

aP = 〈aP〉1 + 〈aP〉3
= a · P + daPI



PQ and P ∨Q

Q

P

••

••
P Qv

P Qx
P Qx

=P Qv
8

PQ = 〈PQ〉0 + 〈PQ〉2
= −1 + P×Q



Reflections, rotations, translations, ...

a

X

aXa



Reflections, rotations, translations, ...

a

X

aXa

b

baXab

cos  (a b) .-1

a   b v



Reflections, rotations, translations, ...

a

X

aXa

bbaXab

P
d(a,b)

2d



Isometries

More useful facts:
I etP produces a 1-parameter family of rotors.

I They are rotations around the euclidean point P.
I They are translations with direction perpendicular to the

direction P for ideal P.
I P(R∗+2,0,1) is isomorphic to the “planar quaternions”.



3D

For E3 the corresponding PGA is P(R∗3,0,1).

I The even subalgebra P(R∗+3,0,1) is isomorphic to DH.
I ε ∈ DH maps to the pseudoscalar I ∈ P(R∗3,0,1).

I Thus, Clifford’s two big discoveries are combined within
P(R∗3,0,1).

I Things are much more interesting since there are 2-vectors
whose squares are not scalars: linear line complexes.



Example 3: Screw motions

Task: Given a line Σ in E3, represent the screw motion around
Σ with given pitch.



Example 3: Screw motions

Step 1: The rotor given by etΣ is a rotation: the sandwich
etΣGe−tΣ rotates G around Σ thru angle 2t .



Example 3: Screw motions

Step 2: The rotor given by edΣI is a translation along Σ of
distance 2d (a “rotation” around the polar line of Σ).



Example 3: Screw motions

Step 3:The rotor given by e(t+d I)Σ is a screw motion combining
these two motions, with pitch d : t .



Conclusion



Conclusion

Additional insights:
I Euclidean and ideal norms form an organic whole.
I Contains H and DH as subalgebras.
I Much remains to be discovered and worked out.
I Bonus: It’s fully metric-neutral if you want to do spherical or

hyperbolic geometry!



More information

I Author’s copy: http://arxiv.org/abs/1411.6502, ”Geometric
algebras for euclidean geometry”

I Preprint: http://arxiv.org/abs/1501.06511, ”Doing euclidean
plane geometry using projective geometric algebra”

I These slides and related resources:
http://page.math.tu-berlin.de/˜gunn/gsumm2016

I Thank you for your attention!


