

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国 | の久の

Projective geometric algebra: A Swiss army knife for graphics and games

Charles Gunn

•a

ヘロマ ヘ動 マイロマー

19.06.2016 COS Geometry Summit Summer School FU-Berlin

2004-2016, jReality developer, TU-Berlin

2015: "conform!", TU-Berlin

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんぐ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

▲□▶▲圖▶▲≣▶▲≣▶ = 目 - のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

・ロト・(部)・(目)・(目)・ ヨー のへで

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ● ● ● ●

Main Idea

The main idea is to represent geometric primitives (points, lines, planes) as numbers which can be multiplied with each other using a geometric product.

(ロ) (同) (三) (三) (三) (○) (○)

Task: Given a point **P** and a line Π in **E**³, find the unique line through **P** perpendicular to Π .

・ コット (雪) (小田) (コット 日)

Step 1: $\Pi \cdot \mathbf{P}$ is the plane through \mathbf{P} perpendicular to Π .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 2: $(\Pi \cdot \mathbf{P}) \wedge \Pi$ is the intersection of this plane with Π .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Step 3: $((\Pi \cdot \mathbf{P}) \land \Pi) \lor \mathbf{P}$ is the joining line of this point with \mathbf{P} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example 2: A kaleidoscope

Task: Given mirror planes **a** and **b** and some geometry **G**, represent the kaleidoscope generated by the mirrors and **G**.

Example 2: A kaleidoscope

Step 1: bGb is the reflection of G in b, aGa the reflection in a.

・ロト・四ト・モート ヨー うへの

Example 2: A kaleidoscope

Solution: Form "sandwiches" **aGa**, **bGb**, **abGba**, **abaGaba** etc., subject to the relation $(ab)^6 = 1$.

Antecedents ...

QUATERNIONS: An algebra for \mathbb{R}^3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Antecedents ...

QUATERNIONS: An algebra for \mathbb{R}^3

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ▶ Imaginary quaternions. If $: (x, y, z) \in \mathbb{R}^3 \leftrightarrow x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.
- Unit quaternions. $\mathbb{U} := \{ \mathbf{g} \in \mathbb{H} \mid \mathbf{g}\overline{\mathbf{g}} = 1 \}.$
- "Geometric" product. For $g,h \in IH$,

 $\mathbf{g}\mathbf{h} = -\mathbf{g}\cdot\mathbf{h} + \mathbf{g}\times\mathbf{h}$

- ▶ **Exponential map** IH → U. $\mathbf{g} \in U$ can be written as $\mathbf{g} = e^{t\mathbf{v}} (= \cos t + \sin t\mathbf{v})$ with $\mathbf{v} \in IH$ and $\mathbf{v}^2 = -1$.
- ► Rotations as sandwiches. For x ∈ R³ and g ∈ U, gxg is a rotation of x around the axis v through an angle 2t.
- ODE's for Euler top.

$$\dot{\mathbf{g}} = \mathbf{g}\mathbf{V}_c$$

 $\dot{\mathbf{M}}_c = \frac{1}{2}(\mathbf{V}_c\mathbf{M}_c - \mathbf{M}_c\mathbf{V}_c)$

(日) (日) (日) (日) (日) (日) (日)

- ▶ Imaginary quaternions. If $: (x, y, z) \in \mathbb{R}^3 \leftrightarrow x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.
- Unit quaternions. $\mathbb{U} := \{ g \in \mathbb{H} \mid g\overline{g} = 1 \}.$
- "Geometric" product. For $g,h \in IH$,

 $\mathbf{g}\mathbf{h} = -\mathbf{g}\cdot\mathbf{h} + \mathbf{g}\times\mathbf{h}$

- ▶ **Exponential map** IH → U. $\mathbf{g} \in U$ can be written as $\mathbf{g} = e^{t\mathbf{v}} (= \cos t + \sin t\mathbf{v})$ with $\mathbf{v} \in IH$ and $\mathbf{v}^2 = -1$.
- ▶ Rotations as sandwiches. For $\mathbf{x} \in \mathbb{R}^3$ and $\mathbf{g} \in \mathbb{U}$, $\mathbf{g}\mathbf{x}\mathbf{\overline{g}}$ is a rotation of \mathbf{x} around the axis \mathbf{v} through an angle 2*t*.
- ► ODE's for Euler top.

$$\dot{\mathbf{g}} = \mathbf{g}\mathbf{V}_c$$

 $\dot{\mathbf{M}}_c = \frac{1}{2}(\mathbf{V}_c\mathbf{M}_c - \mathbf{M}_c\mathbf{V}_c)$

(日) (日) (日) (日) (日) (日) (日)

- ▶ Imaginary quaternions. If $\mathbb{H}: (x, y, z) \in \mathbb{R}^3 \leftrightarrow x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.
- Unit quaternions. $\mathbb{U} := \{ \mathbf{g} \in \mathbb{H} \mid \mathbf{g}\overline{\mathbf{g}} = 1 \}.$
- "Geometric" product. For $g,h \in \mathbb{IH}$,

$$\mathbf{g}\mathbf{h} = -\mathbf{g}\cdot\mathbf{h} + \mathbf{g} imes\mathbf{h}$$

- ▶ Exponential map IIH → U. $g \in U$ can be written as $g = e^{tv} (= \cos t + \sin tv)$ with $v \in IIH$ and $v^2 = -1$.
- ► Rotations as sandwiches. For x ∈ R³ and g ∈ U, gxg is a rotation of x around the axis v through an angle 2t.
- ► ODE's for Euler top.

$$\dot{\mathbf{g}} = \mathbf{g}\mathbf{V}_c$$

 $\dot{\mathbf{M}}_c = \frac{1}{2}(\mathbf{V}_c\mathbf{M}_c - \mathbf{M}_c\mathbf{V}_c)$

(日) (日) (日) (日) (日) (日) (日)

- ▶ Imaginary quaternions. IH : $(x, y, z) \in \mathbb{R}^3 \leftrightarrow xi + yj + zk$.
- Unit quaternions. $\mathbb{U} := \{ g \in \mathbb{H} \mid g\overline{g} = 1 \}.$
- "Geometric" product. For $g,h \in \mathbb{IH}$,

$$\mathbf{g}\mathbf{h} = -\mathbf{g}\cdot\mathbf{h} + \mathbf{g} imes\mathbf{h}$$

- ▶ Exponential map IH → U. $\mathbf{g} \in \mathbb{U}$ can be written as $\mathbf{g} = e^{t\mathbf{v}} (= \cos t + \sin t\mathbf{v})$ with $\mathbf{v} \in IH$ and $\mathbf{v}^2 = -1$.
- ► Rotations as sandwiches. For x ∈ R³ and g ∈ U, gxg is a rotation of x around the axis v through an angle 2t.
- **ODE's for Euler top.**

$$\dot{\mathbf{g}} = \mathbf{g}\mathbf{V}_c$$

 $\dot{\mathbf{M}}_c = \frac{1}{2}(\mathbf{V}_c\mathbf{M}_c - \mathbf{M}_c\mathbf{V}_c)$

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで
- ▶ Imaginary quaternions. If $\mathbb{H}: (x, y, z) \in \mathbb{R}^3 \leftrightarrow x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.
- Unit quaternions. $\mathbb{U} := \{ \mathbf{g} \in \mathbb{H} \mid \mathbf{g}\overline{\mathbf{g}} = 1 \}.$
- "Geometric" product. For $g,h \in IH$,

$$\mathbf{g}\mathbf{h} = -\mathbf{g}\cdot\mathbf{h} + \mathbf{g} imes\mathbf{h}$$

- ▶ Exponential map $\mathbb{IH} \to \mathbb{U}$. $\mathbf{g} \in \mathbb{U}$ can be written as $\mathbf{g} = e^{t\mathbf{v}} (= \cos t + \sin t\mathbf{v})$ with $\mathbf{v} \in \mathbb{IH}$ and $\mathbf{v}^2 = -1$.
- ► Rotations as sandwiches. For x ∈ ℝ³ and g ∈ U, gxg is a rotation of x around the axis v through an angle 2t.

ODE's for Euler top.

$$\dot{\mathbf{g}} = \mathbf{g}\mathbf{V}_c$$

 $\dot{\mathbf{M}}_c = \frac{1}{2}(\mathbf{V}_c\mathbf{M}_c - \mathbf{M}_c\mathbf{V}_c)$

- ▶ Imaginary quaternions. IH : $(x, y, z) \in \mathbb{R}^3 \leftrightarrow xi + yj + zk$.
- Unit quaternions. $\mathbb{U} := \{ g \in \mathbb{H} \mid g\overline{g} = 1 \}.$
- "Geometric" product. For $g,h \in IH$,

$$\mathbf{g}\mathbf{h} = -\mathbf{g}\cdot\mathbf{h} + \mathbf{g} imes\mathbf{h}$$

- ▶ Exponential map $\mathbb{IH} \to \mathbb{U}$. $\mathbf{g} \in \mathbb{U}$ can be written as $\mathbf{g} = e^{t\mathbf{v}} (= \cos t + \sin t\mathbf{v})$ with $\mathbf{v} \in \mathbb{IH}$ and $\mathbf{v}^2 = -1$.
- ► Rotations as sandwiches. For x ∈ ℝ³ and g ∈ U, gxg is a rotation of x around the axis v through an angle 2t.
- ODE's for Euler top.

$$\dot{\mathbf{g}} = \mathbf{g}\mathbf{V}_{c}$$

 $\dot{\mathbf{M}}_{c} = rac{1}{2}(\mathbf{V}_{c}\mathbf{M}_{c} - \mathbf{M}_{c}\mathbf{V}_{c})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BUT:

Quaternions don't allow for representing lines or planes, only points.

AND:

Quaternions don't allow for representing translations, only rotations around the origin.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Grassmann algebra

Hermann Grassmann (1807-1877) Ausdehnungslehre (1844).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Gl	RAS	ALGEBRA	$\Lambda \mathbb{R}^{3*}$	
Gener- ators	$e_{r_{s}}^{e_{r_{s}}}$ {1} { e_{1}, e_{2}, e_{3} }		$\{E_1, E_2, E_3\}$	{I}
P.		An L3 R2	$E_3 := \ell_1 \wedge \ell_2$ $E_1 := \ell_2 \wedge \ell_3$ $E_2 := \ell_3 \wedge \ell_1$	I≔ L₁∧L₂∧L₃
Type	Scalars	oriented planes thru O	vectors	pseudo-scalar
Grade	e 0	- 1	2	3
Dimin	1	3	3	7
	\wedge	is the meet op	erator of oriented su	bspaces.

GR	A53	SMANN	<u>ALGEBRA</u> $P(\Lambda R^3)$			
Gener- ators	{1}	$\left\{E_1, E_2, E_3\right\}$	$\{e_{1}, e_{2}, e_{3}\}$	{I}		
P.		E ₂ E ₃ °E3	E. L3:=E. TE.	I:= Ei∧E₂∧E₃		
Type	scalars	points in IRP2	lines in IRP ²	peudo-scalar		
Grade	e 0	1	2	3		
Dimin	1	3	3	1		
Λ is the join operator of oriented subspaces.						

GR	A5	SMANN	ALGEBRA	$\mathcal{P}(\Lambda \mathbb{R}^{3*})$		
Gener- ators	{1}	$\{e_1, e_2, e_3\}$	$\{E_1, E_2, E_3\}$	{I]		
?.		l3 \$1 22	$E_2 := e_3 \wedge e_1$ $E_1 := e_2 \wedge e_3$ $E_3 := e_1 \wedge e_2$	$I = L_1 \wedge L_2 \wedge L_3$		
Type	scalars	lines in RP ²	points in 1RP2	psudo-scalar		
Grade	e 0	1	2	3		
Dimin	1	3	3	1		
Λ is the meet operator of oriented subspaces.						

Grassmann algebra

BUT:

Grassmann algebra doesn't include inner or cross products, only outer product (no metric).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

William Clifford

William Clifford (1845-1879)

Inventor of biquaternions and of geometric algebra

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Biquaternions (1873)

Clifford's first great discovery, biquaternions, does for E^3 what \mathbb{H} does for \mathbb{R}^3 .

- Biquaternions: $\mathbf{g} + \epsilon \mathbf{h}$ where $\epsilon^2 \in \{1, -1, 0\}$.
- When $\epsilon^2 = 0$, called dual quaternions \mathbb{DH} .
- All the listed features of \mathbb{H} generalize to $\mathbb{D}\mathbb{H}$.
 - "Geometric" product.
 - Exponential map from imaginary \mathbb{DH} to unit \mathbb{DH} .
 - ► Unit DH: rotations and translations as sandwiches.
 - ODE's for free top.
- But, like the quaternions, it does not include meet and join operators.

・ロト・日本・日本・日本・日本

The main idea: add an inner product to a Grassmann algebra.

- An inner product **a** · **b** is a symmetric bilinear form defined on 1-vectors.
- It is characterized by its signature, a triple (p, n, z), telling how many basis vectors square to 1, -1, and 0 (resp.).
- Define a geometric product on 1-vectors by:

$ab := a \cdot b + a \wedge b$

- It can be extended to an associative product on the whole Grassmann algebra to produce a geometric algebra.
- ► It is written $\mathbb{R}_{p,n,z}$ or $\mathbb{R}_{p,n,z}^*$ or $\mathbf{P}(\mathbb{R}_{p,n,z})$ or $\mathbf{P}(\mathbb{R}_{p,n,z}^*)$, depending on the base Grassmann algebra.

The main idea: add an inner product to a Grassmann algebra.

- An inner product **a** · **b** is a symmetric bilinear form defined on 1-vectors.
- It is characterized by its signature, a triple (p, n, z), telling how many basis vectors square to 1, -1, and 0 (resp.).
- Define a geometric product on 1-vectors by:

$ab := a \cdot b + a \wedge b$

- It can be extended to an associative product on the whole Grassmann algebra to produce a geometric algebra.
- ► It is written $\mathbb{R}_{p,n,z}$ or $\mathbb{R}_{p,n,z}^*$ or $\mathbf{P}(\mathbb{R}_{p,n,z})$ or $\mathbf{P}(\mathbb{R}_{p,n,z}^*)$, depending on the base Grassmann algebra.

The main idea: add an inner product to a Grassmann algebra.

- An inner product **a** · **b** is a symmetric bilinear form defined on 1-vectors.
- It is characterized by its signature, a triple (p, n, z), telling how many basis vectors square to 1, -1, and 0 (resp.).
- Define a geometric product on 1-vectors by:

$ab := a \cdot b + a \wedge b$

- It can be extended to an associative product on the whole Grassmann algebra to produce a geometric algebra.
- ► It is written $\mathbb{R}_{p,n,z}$ or $\mathbb{R}_{p,n,z}^*$ or $\mathbf{P}(\mathbb{R}_{p,n,z})$ or $\mathbf{P}(\mathbb{R}_{p,n,z}^*)$, depending on the base Grassmann algebra.

The main idea: add an inner product to a Grassmann algebra.

- An inner product **a** · **b** is a symmetric bilinear form defined on 1-vectors.
- It is characterized by its signature, a triple (p, n, z), telling how many basis vectors square to 1, -1, and 0 (resp.).
- Define a geometric product on 1-vectors by:

$\mathbf{ab} := \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b}$

- It can be extended to an associative product on the whole Grassmann algebra to produce a geometric algebra.
- ► It is written $\mathbb{R}_{p,n,z}$ or $\mathbb{R}_{p,n,z}^*$ or $\mathbf{P}(\mathbb{R}_{p,n,z})$ or $\mathbf{P}(\mathbb{R}_{p,n,z}^*)$, depending on the base Grassmann algebra.

The main idea: add an inner product to a Grassmann algebra.

- An inner product **a** · **b** is a symmetric bilinear form defined on 1-vectors.
- It is characterized by its signature, a triple (p, n, z), telling how many basis vectors square to 1, -1, and 0 (resp.).
- Define a geometric product on 1-vectors by:

$\mathbf{ab} := \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b}$

- It can be extended to an associative product on the whole Grassmann algebra to produce a geometric algebra.
- ► It is written $\mathbb{R}_{p,n,z}$ or $\mathbb{R}_{p,n,z}^*$ or $\mathbf{P}(\mathbb{R}_{p,n,z})$ or $\mathbf{P}(\mathbb{R}_{p,n,z}^*)$, depending on the base Grassmann algebra.

The main idea: add an inner product to a Grassmann algebra.

- An inner product **a** · **b** is a symmetric bilinear form defined on 1-vectors.
- It is characterized by its signature, a triple (p, n, z), telling how many basis vectors square to 1, -1, and 0 (resp.).
- Define a geometric product on 1-vectors by:

$$\mathbf{ab} := \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b}$$

- It can be extended to an associative product on the whole Grassmann algebra to produce a geometric algebra.
- ► It is written $\mathbb{R}_{p,n,z}$ or $\mathbb{R}_{p,n,z}^*$ or $\mathbf{P}(\mathbb{R}_{p,n,z})$ or $\mathbf{P}(\mathbb{R}_{p,n,z}^*)$, depending on the base Grassmann algebra.

- ► Exercise: R_{3,0,0} (or R^{*}_{3,0,0}) is the desired geometric algebra for euclidean vector space R³.
- Exercise: $\mathbb{R}^+_{3,0,0} \simeq \mathbb{H}$.
- ► Non-euclidean geometies. P(R_{3,0,0}) is a geometric algebra for the 2-sphere, and P(R_{2,1,0}) for the hyperbolic plane.
- But a GA for Eⁿ remained elusive 100 years after Clifford's early death (1879).

- ► Exercise: R_{3,0,0} (or R^{*}_{3,0,0}) is the desired geometric algebra for euclidean vector space R³.
- Exercise: $\mathbb{R}^+_{3,0,0} \simeq \mathbb{H}$.
- ▶ Non-euclidean geometies. **P**(ℝ_{3,0,0}) is a geometric algebra for the 2-sphere, and **P**(ℝ_{2,1,0}) for the hyperbolic plane.
- ▶ But a GA for Eⁿ remained elusive 100 years after Clifford's early death (1879).

- ► Exercise: R_{3,0,0} (or R^{*}_{3,0,0}) is the desired geometric algebra for euclidean vector space R³.
- Exercise: $\mathbb{R}^+_{3,0,0} \simeq \mathbb{H}$.
- ▶ Non-euclidean geometies. **P**(ℝ_{3,0,0}) is a geometric algebra for the 2-sphere, and **P**(ℝ_{2,1,0}) for the hyperbolic plane.
- ▶ But a GA for Eⁿ remained elusive 100 years after Clifford's early death (1879).

- ► Exercise: R_{3,0,0} (or R^{*}_{3,0,0}) is the desired geometric algebra for euclidean vector space R³.
- Exercise: $\mathbb{R}^+_{3,0,0} \simeq \mathbb{H}$.
- ► Non-euclidean geometies. P(ℝ_{3,0,0}) is a geometric algebra for the 2-sphere, and P(ℝ_{2,1,0}) for the hyperbolic plane.
- ▶ But a GA for Eⁿ remained elusive 100 years after Clifford's early death (1879).

- ► Exercise: R_{3,0,0} (or R^{*}_{3,0,0}) is the desired geometric algebra for euclidean vector space R³.
- Exercise: $\mathbb{R}^+_{3,0,0} \simeq \mathbb{H}$.
- ► Non-euclidean geometies. P(ℝ_{3,0,0}) is a geometric algebra for the 2-sphere, and P(ℝ_{2,1,0}) for the hyperbolic plane.
- But a GA for Eⁿ remained elusive 100 years after Clifford's early death (1879).

(ロ) (同) (三) (三) (三) (○) (○)

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト の へ ()・

Example: n = 2, the euclidean plane

 $\langle [a_1, b_1, c_1], [a_2, b_2, c_2] \rangle = a_1 a_2 + b_1 b_2 = \cos \alpha$

The correct GA is thus $P(\mathbb{R}^*_{2,0,1})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example: n = 2, the euclidean plane

 $\langle [a_1, b_1, c_1], [a_2, b_2, c_2] \rangle = a_1 a_2 + b_1 b_2 = \cos \alpha$

The correct GA is thus $P(\mathbb{R}^*_{2,0,1})$.

Example: n = 2, the euclidean plane

 $\langle [a_1, b_1, c_1], [a_2, b_2, c_2] \rangle = a_1 a_2 + b_1 b_2 = \cos \alpha$

The correct GA is thus $P(\mathbb{R}^*_{2,0,1})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Basis vectors for $\mathbf{P}(\mathbb{R}^*_{2,0,1})$

Note: We have renamed \mathbf{e}_3 as \mathbf{e}_0 and \mathbf{E}_3 as \mathbf{E}_0 .

Multiplication table for $\textbf{P}(\mathbb{R}^*_{2,0,1})$

$$E_0 := e_1 e_2, \ E_1 := e_2 e_0, \ E_2 := e_0 e_1, \ I := e_0 e_1 e_2$$

	1	e ₀	e ₁	e ₂	E 0	E ₁	E ₂	I
1	1	e ₀	e ₁	e ₂	E ₀	E ₁	E ₂	I
e ₀	e ₀	0	E ₂	- E ₁	I	0	0	0
e ₁	e ₁	- E ₂	1	E 0	e ₂	I	$-\mathbf{e}_0$	E ₁
e ₂	e ₂	E ₁	$-\mathbf{E}_0$	1	$-\mathbf{e}_1$	e ₀	Ι	E ₂
E ₀	E ₀	I	$-\mathbf{e}_2$	e ₁	-1	$-\mathbf{E}_2$	E ₁	$-\mathbf{e}_0$
E ₁	E ₁	0	I	- e ₀	E ₂	0	0	0
E ₂	E ₂	0	e 0	I	- E ₁	0	0	0
		0	F₁	Fa	_ e o	0	0	0

Geometric algebra notation

- ► $\langle \mathbf{X} \rangle_k$ is grade-projection operator: the grade-*k* part of **X**.
- A *k*-vector satisfies $\mathbf{X} = \langle \mathbf{X} \rangle_k$.
- Write 1-vectors (lines) using small Roman letters a, b, etc.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Write 2-vectors (points) using large Roman letters A, B, etc..

Euclidean and ideal elements

For a *k*-vector $\mathbf{X} \in \mathbf{P}(\mathbb{R}^*_{2,0,1})$, \mathbf{X}^2 is a scalar.

- A point or line satisfying $\mathbf{X}^2 \neq 0$ is euclidean.
- A point or line satisfying $X^2 = 0$ is ideal.
- ► e₀ is the ideal line, E₁ and E₂ are the ideal points in the xand y-directions.
- Ideal points can be identified with free vectors.
- A euclidean line **a** can be normalized so $\|\mathbf{a}\| = 1$.
- A euclidean point **P** can be normalized so $\|\mathbf{P}\| = 1$.
- An ideal point V can be normalized so $\|V\|_{\infty} = 1$.
 - Ideal norm $\| \|_{\infty}$ based on signature (2,0,0) on e_0 .

$$\blacktriangleright \Rightarrow \|(x,y,0)\|_{\infty} = \sqrt{x^2 + y^2}.$$

We normalize everywhere we can!

Basis vectors for $\mathbf{P}(\mathbb{R}^*_{2,0,1})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

ab

Assume **a** and **b** are two normalized euclidean lines (1-vectors).

If **a** and **b** intersect in a normalized euclidean point **P**:

$$\mathbf{a}\mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b} = \cos \alpha + (\sin \alpha) \mathbf{P}$$

where α is the oriented angle between the lines.

(ロ) (同) (三) (三) (三) (○) (○)

ab

Assume **a** and **b** are two normalized euclidean lines (1-vectors).

If **a** and **b** intersect in a normalized ideal point V:

$$\mathbf{ab} = 1 + d_{\mathbf{ab}} \mathbf{V}$$

where d_{ab} is the oriented distance between the lines.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@
The formula correctly differentiates between the two cases and provides the appropriate weighting factor:

- an angle when the lines intersect, and
- a distance when they are parallel.

This interweaving of the euclidean and the ideal is a recurring theme in $\mathbf{P}(\mathbb{R}^*_{n,0,1})$.

(日) (日) (日) (日) (日) (日) (日)

The formula correctly differentiates between the two cases and provides the appropriate weighting factor:

- an angle when the lines intersect, and
- a distance when they are parallel.

This interweaving of the euclidean and the ideal is a recurring theme in $\mathbf{P}(\mathbb{R}^*_{n,0,1})$.

(ロ) (同) (三) (三) (三) (○) (○)

$$\mathbf{aP} = \langle \mathbf{aP} \rangle_1 + \langle \mathbf{aP} \rangle_3$$

= $\mathbf{a} \cdot \mathbf{P} + d_{\mathbf{aP}} \mathbf{I}$

$\textbf{PQ} \text{ and } \textbf{P} \lor \textbf{Q}$

$$\begin{split} \mathbf{P}\mathbf{Q} &= \langle \mathbf{P}\mathbf{Q} \rangle_0 + \langle \mathbf{P}\mathbf{Q} \rangle_2 \\ &= -1 + \mathbf{P} \times \mathbf{Q} \end{split}$$

Reflections, rotations, translations, ...

Reflections, rotations, translations, ...

Reflections, rotations, translations, ...

Isometries

More useful facts:

- *e^{tP}* produces a 1-parameter family of rotors.
 - They are rotations around the euclidean point P.
 - They are translations with direction perpendicular to the direction P for ideal P.

(日) (日) (日) (日) (日) (日) (日)

▶ $\mathbf{P}(\mathbb{R}^{*+}_{2,0,1})$ is isomorphic to the "planar quaternions".

For \mathbf{E}^3 the corresponding PGA is $\mathbf{P}(\mathbb{R}^*_{3,0,1})$.

- The even subalgebra $\mathbf{P}(\mathbb{R}^{*+}_{3,0,1})$ is isomorphic to $\mathbb{D}\mathbb{H}$.
 - $\epsilon \in \mathbb{DH}$ maps to the pseudoscalar $I \in P(\mathbb{R}^*_{3,0,1})$.
- ► Thus, Clifford's two big discoveries are combined within P(ℝ^{*}_{3,0,1}).
- Things are much more interesting since there are 2-vectors whose squares are not scalars: linear line complexes.

Task: Given a line Σ in **E**³, represent the screw motion around Σ with given pitch.

・ コット (雪) ・ (目) ・ (目)

Step 1: The rotor given by $e^{t\Sigma}$ is a rotation: the sandwich $e^{t\Sigma}\mathbf{G}e^{-t\Sigma}$ rotates **G** around Σ thru angle 2*t*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Step 2: The rotor given by $e^{d\Sigma I}$ is a translation along Σ of distance 2*d* (a "rotation" around the polar line of Σ).

Step 3:The rotor given by $e^{(t+dI)\Sigma}$ is a screw motion combining these two motions, with pitch d : t.

Conclusion

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Conclusion

Additional insights:

- Euclidean and ideal norms form an organic whole.
- Contains \mathbb{H} and $\mathbb{D}\mathbb{H}$ as subalgebras.
- Much remains to be discovered and worked out.
- Bonus: It's fully metric-neutral if you want to do spherical or hyperbolic geometry!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

More information

- Author's copy: http://arxiv.org/abs/1411.6502, "Geometric algebras for euclidean geometry"
- Preprint: http://arxiv.org/abs/1501.06511, "Doing euclidean plane geometry using projective geometric algebra"

a

•a

Q•a)a

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- These slides and related resources: a http://page.math.tu-berlin.de/~gunn/gsumm2016
- Thank you for your attention! $\cos^{-1}(a \cdot b) = a \wedge b$