Computational Aspects of Mappings

Noam Aigerman and Shahar Kovalsky Weizmann Institute of Science

> IGS Graduate School Berlin, June 2016

(boring!) Definition

Mapping / Map :

A function between domains/spaces

Examples

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

 $f\colon \mathbb{M}\to \mathbb{R}^2$

 $f: \mathbb{M} \to \mathbb{M}'$

 $f\colon V\to \mathbb{R}^3$

Applications...

Deformations

Parameterizations

[Lévy et al. 02]

[Schuler et al. 13]

[Fu et al. 15]

[Weber et al. 12]

Surface mappings

[Schreiner et al. 04]

[Jin et al. 08]

Discrete maps...

Smooth case

e.g., a smooth surface is mapped to \mathbb{R}^2

Discrete case

e.g., a surface **mesh** is mapped to \mathbb{R}^2

Focus on a Specific embedding

 \mathbf{x}

 Φ_i

1. Boundary mapped to convex polygon

- 1. Boundary constrained to convex polygon
- **2. Discrete Harmonic** Interior vertices at average of neighbors

- 1. Boundary constrained to convex polygon
- 2. Discrete Harmonic Interior vertices at average of neighbors

1. Boundary to convex polygon

2. Harmonic

- 1. Bijective: The graph edges don't overlap themselves
- 2. Discrete Harmonic: analog to smooth harmonic maps

Continuous harmonic maps

• Harmonic **function**:

 $\Delta f = 0$

"Laplacian – difference of value at point to average of neighborhood"

Continues harmonic maps

- *p* mapped to average of neighborhood!
- By construction, the discrete case

• Imposing constraints

• Finding maps that are most...

Constrained Optimization

 $E(\Phi) = E(A_1, \dots, A_m)$

Map optimization

• In terms of differentials:

 $\operatorname{argmin} E(A_1, \dots, A_m)$

Map optimization

• In terms of differentials:

Map optimization

Must impose continuity!

Explicit continuity

- Optimization variables: A_1, A_2, \dots, A_m
- Adjacent A_i's must agree

Explicit continuity

- Optimization variables: A_1, A_2, \dots, A_m
- Adjacent A_i's must agree

$$A_i v_1 = A_j v_1$$

Implicit continuity

$$A_{i}[v_{1} v_{2} v_{3}] = [u_{1} u_{2} u_{3}]$$
$$A_{i} = [u_{1} u_{2} u_{3}] [v_{1} v_{2} v_{3}]^{\dagger}$$
$$A_{i} = A_{i}(U)$$

Linearly express A_i 's in terms of U

Implicit continuity

• Optimization variables: u_1, u_2, \dots, u_n (U)

$$E(\Phi) = \sum_{j} f\left(A_{j}(\boldsymbol{U})\right)$$

[Weber & Zorin 2014]

[Weber & Zorin 2014]

[Weber & Zorin 2014]

Orthogonal and Similarity

• *R* is <u>orthogonal</u> if $R^T = R^{-1}$ (rotation if det R > 0)

• *S* is a <u>similarity</u> if $S = \alpha R$

Closest rotation/similarity

- $\mathcal{R}(A)$ = closest orthogonal/rotation matrix to A
- S(A) = closest similarity matrix to A
- Computable using **SVD**: $A = U\Sigma V^T$; $\Sigma = \text{diag}(\sigma_1, ..., \sigma_n)$

•
$$\mathcal{R}(A) = U \Sigma V^T = U V^T$$

• $\mathcal{S}(A) = \overline{\sigma} U V^T$

mean of SVs

$$E_L = \sum_j w_j \left\| A_j - \mathcal{S}(A_j) \right\|_F^2$$

closest similarity

$$E_L = \sum_j w_j \left\| A_j - \mathcal{S}(A_j) \right\|_F^2$$

amount of non-similarity

$$E_L = \sum_j w_j \left\| A_j - S(A_j) \right\|_F^2$$

amount of non-similarity

 $E_L = \sum_{j} w_j \left\| A_j - \mathcal{S}(A_j) \right\|_F^2 = 0$

global similarity = discrete conformal maps

[Lévy et al. 2002]

As-Rigid-As-Possible (ARAP)

$$E_R = \sum_j w_j \left\| A_j - \mathcal{R}(A_j) \right\|_F^2$$

closest rigid transformation

As-Rigid-As-Possible (ARAP)

$$E_{R} = \sum_{j} w_{j} \left\| A_{j} - \mathcal{R}(A_{j}) \right\|_{F}^{2}$$
amount of non-rigidity

As-Rigid-As-Possible (ARAP)

[Sorkine & Alexa 2007*; Chao et al. 2010]

ARAP vs. LSCM

ARAP vs. LSCM

Dirichlet

LSCM

 $\left\|A_j - \mathcal{S}(A_j)\right\|_{F}^2$

ARAP

 $\left\|A_j - \mathcal{R}(A_j)\right\|_F^2$

Dirichlet

Least squares

LSCM

 $\left\|A_j - \mathcal{S}(A_j)\right\|_{F}^2$

ARAP

 $\left\|A_j - \mathcal{R}(A_j)\right\|_F^2$

Closest Similarity – 2d case

- $\mathcal{S}(A) = \overline{\sigma} U V^T$
- Takes a closed form:

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \frac{1}{2} \begin{bmatrix} a+d & c-b \\ b-c & a+d \end{bmatrix} + \frac{1}{2} \begin{bmatrix} a-d & c+b \\ b+c & -a+d \end{bmatrix}$$

similarity anti-similarity

Dirichlet

 $\left\|A_j\right\|_F^2$

Least squares

LSCM

ARAP

 $\left\|A_j - \mathcal{R}(A_j)\right\|_F^2$

Dirichlet

Least squares

LSCM

 $\left\|A_j - \mathcal{S}(A_j)\right\|_{F}^2$

2d – Least squares

ARAP

 $\left\|A_j - \mathcal{R}(A_j)\right\|_F^2$

Dirichlet

Least squares

LSCM

 $\left\|A_j - \mathcal{S}(A_j)\right\|_{E}^{2}$

2d - least squares iterative approximation

ARAP

 $\left\|A_j - \mathcal{R}(A_j)\right\|_F^2$

iterative approximation

Where's the difficulty?

$$E_R = \sum_j w_j \|A_j - \mathcal{R}(A_j)\|_F^2$$

• Not very friendly for direct minimization:

$$A - \mathcal{R}(A) = A - UV^T$$

via SVD of A

But $\mathcal{R}(A_j)$ is easy to compute...

Alternating optimization

$$E_R = \sum_j w_j \|A_j - \mathcal{R}(A_j)\|_F^2$$

- Iteratively:

Local step

• Minimize

$$\sum_{j} w_{j} \left\| A_{j} - R_{j} \right\|_{F}^{2}$$
Global step

[Liu et al. 2008]

Alternating optimization

Very general

[Bouaziz et al. 2012]

• Related jargon:

gradient descent, global-local, alternating projections, proximal algorithms

Singular values perspective

Dirichlet

 $||A||_{F}^{2}$

LSCM

 $||A - S(A)||_{F}^{2}$

ARAP

 $\|A - \mathcal{R}(A)\|_F^2$

Singular values perspective

 $\sum_k \sigma_k^2$

Singular values

Parameterization

Most Isometric Parameterization [Hormann & Greiner 2000]

Parameterization

[Sorkine et al. 2000]

Parameterization

[Smith & Schaefer 2015]

Surface mapping

[Schreiner et al. 2014]

[Aigerman et al. 2014]

• Volume mapping $(\sigma_1 - \overline{\sigma})^2 + (\sigma_2 - \overline{\sigma})^2 + (\sigma_3 - \overline{\sigma})^2$

[Paillé & Poulin 2012]

• Volumetric mesh improvement

[Freitag & Knupp 2002]

Spaces of Mappings

Spaces of Mappings

Example

As-Rigid-As-Possible

Spaces of Mappings

Where's the challenge?

• Singular values = roots of polynomials

SV constraints (+energy)

[Lipman 2012]

[Kovalsky et al. 2014]

Approximate via a sequence of convex programs

Bounding SVs

• Simplest constraint

Convex = Simple?

• Cone of positive semidefinite matrices

 $\{A: \mathbf{x}^T A \mathbf{x} \ge 0 \quad \text{for all} \quad \mathbf{x}\}$

"easy"

Convex = Simple?

Cone of copositive matrices

 $\{A: x^T A x \ge 0 \quad \text{for all} \ x \ge 0\}$

"very difficult"

Standard convex conic programs

• Linear inequalities

 \Rightarrow linear programming (LP)

Standard convex conic programs

• Second order (ice cream) cones

 $\|\mathbf{x}\|_2 \le t$

⇒ second order cone programming (SOCP)

Standard convex conic programs

• Linear matrix inequalities (LMIs)

 $X \ge 0$

 \Rightarrow semidefinite programming (SDP)

Hierarchy

Guarantees & efficient optimization engines!

Convexification

Key observation

Symmetric

Anti-symmetric
Key observation

Symmetric

Anti-symmetric

Key observation

$$\gamma \leq \sigma_{\min}(A)$$

$$\gamma \leq \sigma_{\min}\left(\frac{A+A^T}{2}\right)$$

SOCP – 2d SDP – 3d and higher

2d vs. 3d	
2-d	3-d (and higher)
$\mathcal{S}(A)$ has a closed linear form	$\mathcal{S}(A)$ is non-linear

2d vs. 3d	
2-d	3-d (and higher)
$\mathcal{S}(A)$ has a closed linear form	$\mathcal{S}(A)$ is non-linear
$R_1 R_2 = R_2 R_1$	$R_1 R_2 \neq R_2 R_1$

2d vs. 3d	
2-d	3-d (and higher)
$\mathcal{S}(A)$ has a closed linear form	$\mathcal{S}(A)$ is non-linear
$R_1 R_2 = R_2 R_1$	$R_1 R_2 \neq R_2 R_1$
σ_i 's have a closed form	roots of $\geq 6^{th}$ degree poly

2d vs. 3d	
2-d	3-d (and higher)
$\mathcal{S}(A)$ has a closed linear form	$\mathcal{S}(A)$ is non-linear
$R_1 R_2 = R_2 R_1$	$R_1 R_2 \neq R_2 R_1$
σ_i 's have a closed form	roots of $\geq 6^{th}$ degree poly
SOCP	SDP

"Most Conformal Mapping"

- Well studied in 2D [Weber et al. 2012]
- Little known in 3D...

Injectivity

Injectivity

• "Map is 1-to-1"

Injective affine map

- Different orientation?
- Not injective on edges

- Injecitivity requires consistent orientation!
 - Is it sufficient?

- Consistent orientation
- Not injective only on inner vertex

• Winding around vertex should be 2π

Local Injectivity

• "in a small neighborhood, we are injective"

• Note: winding around vertex is always $2\pi k$

[Aigerman2014]

Local Injectivity

• "in small neighborhood, we are injective"

- Local inj < Global inj
- e.g., f is locally inj

Important on its own!

Global injectivity?

an is

- [Tution 1961]: my embedding is injective!
- Soundary doesn't overlap?

Injective boundary

- Fixed
 - Highly constrained

[Gortler et. al 2006]

Injective boundary

 Prevent boundary from overlapping during optimization

[Smith and Schaefer 2015]

Variations on a theme

Parameterizing a disk...

Parameterizing a sphere?

Naïve solution for spheres

Reduce spheres to disks...

Kind of unnatural

Instead of fixed boundary...

Periodic boundary!

Cone manifolds

[Myles and Zorin 2013]

[Bommes et al. 2009]

[Springborn et al. 2008]

[Aigerman and Lipman 2015]

Tutte for sphere

Linear conditions for bijective parameterization

1. Periodic Boundary

1. Periodic Boundary

Can glue copies across cuts!

1. Periodic Boundary

Can (conceptually) tile the whole plane

2. Discrete Harmonic Tiling

Each vertex in average of neighbours

Harmonic tiling of \mathbb{R}^2

Orbifold Tutte Embeddings

lf:

- 1. Boundaries are rotated copies that tile the plane
- 2. The tiling is harmonic **everywhere**

Then:

There exists a unique solution, and it is **injective**!

Why does it work?

Euclidean orbifold = cone manifold which tiles \mathbb{R}^2

Different cuts yield same embedding

Embed seamlessly into a "pillow"

Surface maps

Surface maps

- Input:
 - Two surface meshes M, N
 - Coarse set of corresponding landmarks
- Output: a map $f: M \to N$
 - Bijective (1-1 and onto)
 - High quality (low isometric distortion)
 - Maps landmarks correctly

How to represent a surface map?

Use flattenings to \mathbb{R}^2

Cut the mesh and map to disk

Flattenings to \mathbb{R}^2

Recovering the bijection

Recovering the bijection

Is this good enough?

Is this good enough?

Is this good enough?

Reduce the flattenings' distortion!

Let the boundaries move!

Let the boundaries move

Overlaps

Cuts affect mapping!

Cuts affect mapping!

How to achieve **seamless** result?

Orbifolds are seamless

Define map via orbifold embeddings

Summary

Piecewise linear is simple yet powerful

Beyond piecewise linear

• Meshless (e.g., thin plate splines)

Beyond piecewise linear

• Higher order FEM

[Liu et al. 2014]

What's next?

- Faster optimization
- Coping with non-Euclidean domains
- New distortion metrics

THE END

(Some things cannot be mapped)