
Sparse Matrix Algorithms
combinatorics + numerical methods + applications =

SuiteSparse

Tim Davis
Texas A&M University

June 23, 2016

International Geometry Summit 2016, Berlin

Outline

Computer Science + Applied Math =[
high-performance combinatorial scientific computing

+many applications enabled by my contributions

]
Sparse matrix algorithms
Contributions to the field

from theory, to algorithms, to reliable software, to applications
sparse LU for circuit simulation (KLU)
sparse Cholesky update/downdate (CHOLMOD)
approximate minimum degree (AMD)
unsymmetric multifrontal LU (UMFPACK)
multifrontal QR (SuiteSparseQR)

Current work
GPU-accelerated sparse LU, Cholesky, and QR
NVIDIA Academic Partner / Texas A&M CUDA Research
Center
GPU-based methods, partnership with NVIDIA
graph partitioning
sparse SVD

Future vision

Computer Science + Applied Math =
combinatorial scientific computing + applications

Sparse Direct Methods: Algorithms + Code

Impact: new algorithms and useful code

solve Ax = b when A is sparse (LU, Chol, QR, ...)

sparse least-squares problems

rank estimates, sparse null space bases

sparse SVD

solve Ax = b, then let A undergo a low-rank change

fill-reducing orderings, graph partitioning

all in highly reliable, high performance code

3x more reliable than NASA’s most extreme effort

enabling a vast domain of commercial, academic, and
government lab applications

...

Sparse matrix algorithms

Solve Lx = b with L unit lower triangular; L, x , b are sparse

x = b
for j = 0 to n − 1 do

if xj 6= 0
for each i > j for which lij 6= 0 do

xi = xi − lijxj

non-optimal time O(n + |b|+ f), where f = flop count

problem: outer loop and the test for xj 6= 0

solution: suppose we knew X , the nonzero pattern of x

optimal time O(|b|+ f), but how do we find X ?
(Gilbert/Peierls)

Sparse matrix algorithms

Solve Lx = b with L unit lower triangular; L, x , b are sparse

x = b
for j = 0 to n − 1 do

if xj 6= 0
for each i > j for which lij 6= 0 do

xi = xi − lijxj

if bi 6= 0 then xi 6= 0

if xj 6= 0 and ∃i(lij 6= 0)
then xi 6= 0

start with pattern B of b

graph L: edge (j , i) if lij 6= 0

X = ReachL(B)
(Gilbert/Peierls)

Sparse matrix algorithms

If B = {4, 6} then X = {6, 10, 11, 4, 9, 12, 13, 14}

KLU: left looking LU

Each column of L and U computed via sparse Lx=b

L = speye(n) ; U = speye(n) ;

for k = 1:n

x = L \ A(:,k)

U(1:k,k) = x(1:k)

L(k:n,k) = x(k:n) / U(k,k)

LU = PAQ

Q: fill-reducing preordering

P: partial pivoting

also exploits permutation to
block triangular form

appears in commercial and
government lab circuit
simulators

Sparse Cholesky update/downdate

The update/downdate problem:

Given A = LLT

A undergoes a low-rank change

compute L L
T

= A± wwT

arises in optimization, crack propagation, robotics, new data
in least-squares, short-ciruit power analysis, ...

Sparse Cholesky update/downdate

Key results

if L doesn’t change: columns in L that change = path from
minW to root of the etree

if L does change, follow the path in etree of L

Update/downdate in time proportional to the number of
entries in L that change

Hypersparse solution to Ax=b

Solving for just one component

Suppose b is all zero except b3, and all you want is x3

Forward solve: just up the path

Back solve: just down the path

Time is O(entries in L along the path), not O(nnz in L)

Sparse Cholesky update/downdate

CHOLMOD update/downdate: key results / impact

update/downdate faster than a Lx = b solve for dense b

example application: LPDASA (Hager and Davis)

maintains Cholesky factorization of AFA
T
F for basis set F

update/downdate as basis set changes

example: g2o (Kümmerle et al), iSAM

robotics, simultaneous localization and mapping
builds a map of its surroundings
update/downdate as new images arrive

example: crack propagation (Pais, Kim, Davis et al)

structural engineering problem: crack in aircraft fuselage
update/downdate as crack progresses through airframe

example: short-circuit power analysis

hypersparse solve, cut numerics by 10x to 100x

Multifrontal method

Classic symmetric multifrontal method (Duff, Reid, others)
Cliques + elimination tree = sequence of frontal matrices
Dense factorization within a front; assemble data into parent

UMFPACK: unsymmetric multifrontal method

Frontal matrices become rectangular

Assemble data into ancestors, not just parents

UMFPACK: unsymmetric multifrontal method

Key results / impact

sparse lu in MATLAB, x = A \ b

used in many commercial CAD tools, Mathematics, Octave, ...

SuiteSparseQR: multifrontal sparse QR factorization

Key results / impact

rectangular fronts like UMFPACK, but simpler frontal matrix
assembly

multicore parallelism

amenable to GPU implementation (in progress)

sparse qr in MATLAB, and x=A\b
on the GPU:

novel “Bucket QR” scheduler and custom GPU kernels
up to 150 GFlops on the Kepler K20c
up to 20x speedup vs CPU algorithm (5x to 10x typical)
prototype multi-GPU: another ∼ 2x on 2 GPUs

Highly-concurrent heterogeneous parallel computing

Consider a subtree of frontal matrices on the GPU

Highly-concurrent heterogeneous parallel computing

Expanded to show GPU kernel launches

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

GPU-based heterogeneous parallel computing

Highly-concurrent heterogeneous parallel computing

Putting it all together ...
C2070 K20 K40

GPU kernels:
apply block Householder 183 Gflops 260 Gflops ∼500
factorize 3 tiles 27 Gflops 20 Gflops ∼50

dense QR for large front 107 Gflops 120 Gflops

sparse QR on GPU 80 Gflops 150 Gflops
peak speedup over CPU 11x 20x
typical speedup over CPU 5x 10x

Performance on many matrices

Supernodal Sparse Cholesky on the GPU

SuiteSparse: features in the packages

orderings: AMD, COLAMD, CAMD, CCOLAMD, BTF

CHOLMOD: Supernodal Cholesky, with update/downdate, +GPU

SPQR: multifrontal QR, +GPU

UMFPACK: multifrontal LU

KLU: light-weight sparse LU, well-suited to circuits, power

SPQR RANK: sparse null set basis, rank estimation, pseudo-inverse

FACTORIZE: object oriented wrapper for MATLAB.
F=factorize(A) ; x=F\b ; x=inverse(A)*b (no inverse).

UFget: MATLAB interface to SuiteSparse Matrix Collection

CSparse: sparse LU, Cholesky, QR, matrix ops, update/downdate, ...

Sparseinv: sparse inverse subset

many matrix operators (sparse matrix multiply, transpose, ...)

to appear: sparse SVD, edge and vertex graph partitioning

9 Collected Algorithms of the ACM, more on the way

all packages have MATLAB interfaces (or just use x=A\b!)

Future vision

Computer Science + Applied Math
(combinatorics + linear algebra + graph algorithms) =[

high-performance combinatorial scientific computing
+many applications enabled by my contributions

]
computational mathematics: the future is heterogeneous;
driven by power constraints, need for parallelism
high impact – getting it out the door

novel algorithms: delivered in widely used robust software
Collected Algorithms of the ACM
enabling academic projects: Julia, R, Octave, FEnICS,
ROS.org, ...
current collaborations: UTK, UF, NVIDIA, Lawrence
Livermore, Harvard, ...
growing industrial impact: MathWorks, Google, NVIDIA,
Mentor Graphics, Cadence, MSC Software, Berkeley Design
Automation, ...
applications: optimization, robotics, circuit simulation,
computer graphics, computer vision, finite-element methods,
geophysics, stellar evolution, financial simulation, ...

Computer Science + Math + Music = Art

algorithmic translation of music into visual art

theme artwork, London Electronic Music Festival

