Sparse Matrix Algorithms
 combinatorics + numerical methods + applications $=$ SuiteSparse

Tim Davis
Texas A\&M University

June 23, 2016

International Geometry Summit 2016, Berlin

Outline

- Computer Science + Applied Math $=$
[high-performance combinatorial scientific computing +many applications enabled by my contributions]
- Sparse matrix algorithms
- Contributions to the field
- from theory, to algorithms, to reliable software, to applications
- sparse LU for circuit simulation (KLU)
- sparse Cholesky update/downdate (CHOLMOD)
- approximate minimum degree (AMD)
- unsymmetric multifrontal LU (UMFPACK)
- multifrontal QR (SuiteSparseQR)
- Current work
- GPU-accelerated sparse LU, Cholesky, and QR
- NVIDIA Academic Partner / Texas A\&M CUDA Research Center
- GPU-based methods, partnership with NVIDIA
- graph partitioning
- sparse SVD
- Future vision

Computer Science + Applied Math $=$ combinatorial scientific computing + applications

Sparse Direct Methods: Algorithms + Code

Impact: new algorithms and useful code

- solve $A x=b$ when A is sparse (LU, Chol, QR, ...)
- sparse least-squares problems
- rank estimates, sparse null space bases
- sparse SVD
- solve $A x=b$, then let A undergo a low-rank change
- fill-reducing orderings, graph partitioning
- all in highly reliable, high performance code
- 3x more reliable than NASA's most extreme effort
- enabling a vast domain of commercial, academic, and government lab applications
- ...

Sparse matrix algorithms

Solve $L x=b$ with L unit lower triangular; L, x, b are sparse

$$
\begin{aligned}
& x=b \\
& \text { for } j=0 \text { to } n-1 \text { do } \\
& \text { if } x_{j} \neq 0 \\
& \qquad \text { for each } i>j \text { for which } l_{i j} \neq 0 \text { do } \\
& \quad x_{i}=x_{i}-l_{i j} x_{j}
\end{aligned}
$$

- non-optimal time $O(n+|b|+f)$, where $f=$ flop count
- problem: outer loop and the test for $x_{j} \neq 0$
- solution: suppose we knew \mathcal{X}, the nonzero pattern of x
- optimal time $O(|b|+f)$, but how do we find \mathcal{X} ? (Gilbert/Peierls)

Sparse matrix algorithms

Solve $L x=b$ with L unit lower triangular; L, x, b are sparse

$$
\begin{aligned}
& x=b \\
& \text { for } j=0 \text { to } n-1 \text { do } \\
& \text { if } x_{j} \neq 0 \\
& \qquad \text { for each } i>j \text { for which } l_{i j} \neq 0 \text { do } \\
& \quad x_{i}=x_{i}-l_{i j} x_{j}
\end{aligned}
$$

- if $b_{i} \neq 0$ then $x_{i} \neq 0$
- if $x_{j} \neq 0$ and $\exists i\left(l_{i j} \neq 0\right)$ then $x_{i} \neq 0$
- start with pattern \mathcal{B} of b
- graph \mathcal{L} : edge (j, i) if $\Lambda_{i j} \neq 0$
- $\mathcal{X}=\operatorname{Reach}_{\mathcal{L}}(\mathcal{B})$
(Gilbert/Peierls)

Sparse matrix algorithms

If $\mathcal{B}=\{4,6\}$ then $\mathcal{X}=\{6,10,11,4,9,12,13,14\}$

KLU: left looking LU

Each column of L and U computed via sparse $L x=b$

$$
\begin{aligned}
& L=\text { speye }(n) ; U=\text { speye }(n) ; \\
& \text { for } k=1: n \\
& \quad x=L \backslash A(:, k) \\
& \\
& \quad U(1: k, k)=x(1: k) \\
& \\
& L(k: n, k)=x(k: n) / U(k, k)
\end{aligned}
$$

- $L U=P A Q$
- Q: fill-reducing preordering
- P: partial pivoting
- also exploits permutation to block triangular form
- appears in commercial and government lab circuit simulators

Sparse Cholesky update/downdate

The update/downdate problem:

- Given $A=L L^{T}$
- A undergoes a low-rank change
- compute $\bar{L} \bar{L}^{T}=A \pm w w^{T}$
- arises in optimization, crack propagation, robotics, new data in least-squares, short-ciruit power analysis, ...

Sparse Cholesky update/downdate

Key results

- if \mathcal{L} doesn't change: columns in L that change $=$ path from $\min \mathcal{W}$ to root of the etree
- if \mathcal{L} does change, follow the path in etree of \bar{L}
- Update/downdate in time proportional to the number of entries in L that change

Hypersparse solution to $\mathbf{A x}=\mathrm{b}$

Solving for just one component

- Suppose b is all zero except b_{3}, and all you want is x_{3}
- Forward solve: just up the path
- Back solve: just down the path
- Time is O (entries in L along the path), not O (nnz in L)

Sparse Cholesky update/downdate

CHOLMOD update/downdate: key results / impact

- update/downdate faster than a $L x=b$ solve for dense b
- example application: LPDASA (Hager and Davis)
- maintains Cholesky factorization of $A_{F} A_{F}^{T}$ for basis set F
- update/downdate as basis set changes
- example: g2o (Kümmerle et al), iSAM
- robotics, simultaneous localization and mapping
- builds a map of its surroundings
- update/downdate as new images arrive
- example: crack propagation (Pais, Kim, Davis et al)
- structural engineering problem: crack in aircraft fuselage
- update/downdate as crack progresses through airframe
- example: short-circuit power analysis
- hypersparse solve, cut numerics by $10 x$ to $100 x$

Multifrontal method

- Classic symmetric multifrontal method (Duff, Reid, others)
- Cliques + elimination tree $=$ sequence of frontal matrices
- Dense factorization within a front; assemble data into parent

UMFPACK: unsymmetric multifrontal method

- Frontal matrices become rectangular
- Assemble data into ancestors, not just parents

UMFPACK: unsymmetric multifrontal method

Key results / impact

- sparse lu in MATLAB, $x=A \backslash b$
- used in many commercial CAD tools, Mathematics, Octave, ...

SuiteSparseQR: multifrontal sparse QR factorization

Key results / impact

- rectangular fronts like UMFPACK, but simpler frontal matrix assembly
- multicore parallelism
- amenable to GPU implementation (in progress)
- sparse qr in MATLAB, and $x=A \backslash b$
- on the GPU:
- novel "Bucket QR" scheduler and custom GPU kernels
- up to 150 GFlops on the Kepler K20c
- up to $20 x$ speedup vs CPU algorithm ($5 \times$ to $10 x$ typical)
- prototype multi-GPU: another $\sim 2 x$ on 2 GPUs

Consider a subtree of frontal matrices on the GPU

Highly-concurrent heterogeneous parallel computing

Expanded to show GPU kernel launches

GPU-based heterogeneous parallel computing

Highly-concurrent heterogeneous parallel computing

- Putting it all together ...

	C2070	K20	K40
GPU kernels:			
apply block Householder	183 Gflops	260 Gflops	~ 500
factorize 3 tiles	27 Gflops	20 Gflops	~ 50
dense QR for large front	107 Gflops	120 Gflops	
sparse QR on GPU	80 Gflops	150 Gflops	
peak speedup over CPU	$11 x$	$20 x$	
typical speedup over CPU	$5 x$	$10 x$	

Performance on many matrices

Supernodal Sparse Cholesky on the GPU

SuiteSparse: features in the packages

- orderings: AMD, COLAMD, CAMD, CCOLAMD, BTF
- CHOLMOD: Supernodal Cholesky, with update/downdate, +GPU
- SPQR: multifrontal QR, +GPU
- UMFPACK: multifrontal LU
- KLU: light-weight sparse LU, well-suited to circuits, power
- SPQR_RANK: sparse null set basis, rank estimation, pseudo-inverse
- FACTORIZE: object oriented wrapper for MATLAB. $\mathrm{F}=$ factorize (A) ; $\mathrm{x}=\mathrm{F} \backslash \mathrm{b}$; $\mathrm{x}=$ inverse (A) $* \mathrm{~b}$ (no inverse).
- UFget: MATLAB interface to SuiteSparse Matrix Collection
- CSparse: sparse LU, Cholesky, QR, matrix ops, update/downdate, ...
- Sparseinv: sparse inverse subset
- many matrix operators (sparse matrix multiply, transpose, ...)
- to appear: sparse SVD, edge and vertex graph partitioning
- 9 Collected Algorithms of the ACM , more on the way
- all packages have MATLAB interfaces (or just use $x=A \backslash b$!)

Future vision

- Computer Science + Applied Math (combinatorics + linear algebra + graph algorithms $)=$ [high-performance combinatorial scientific computing +many applications enabled by my contributions]
- computational mathematics: the future is heterogeneous; driven by power constraints, need for parallelism
- high impact - getting it out the door
- novel algorithms: delivered in widely used robust software
- Collected Algorithms of the ACM
- enabling academic projects: Julia, R, Octave, FEnICS, ROS.org, ...
- current collaborations: UTK, UF, NVIDIA, Lawrence Livermore, Harvard, ...
- growing industrial impact: MathWorks, Google, NVIDIA, Mentor Graphics, Cadence, MSC Software, Berkeley Design Automation, ...
- applications: optimization, robotics, circuit simulation, computer graphics, computer vision, finite-element methods, geophysics, stellar evolution, financial simulation, ...

Computer Science + Math + Music $=$ Art

- algorithmic translation of music into visual art
- theme artwork, London Electronic Music Festival

